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ABSTRACT

Formulating a Crowd State Prediction Problem for
Application to Crowd Control

Brooks A. Butler
Department of Computer Science, BYU

Master of Science

This project considers a new application of crowd control, namely, keeping the public
safe during large scale demonstrations. This problem is difficult for a variety of reasons,
including limited access to informative sensing and effective actuation mechanisms, as well
as limited understanding of crowd psychology and dynamics. This project takes a first step
towards solving this problem by formulating a crowd state prediction problem in consid-
eration of recent work involving crowd behavior identification, crowd movement modeling,
and crowd psychology modeling. We build a non-linear crowd behavior model incorporating
components of personality modeling, human emotion modeling, group opinion dynamics,
and group movement modeling. This model is then linearized and used to build a state
observer whose effectiveness is then tested on system outputs from both non-linear and lin-
earized models. We show that knowledge of the crowd emotion equilibrium is necessary for
zero-error convergence; however, other parameters, such as individual personality parame-
ters of crowd agents, may be approximated and zero-error convergence still achieved given
the crowd equilibrium point and sign of agent opinions. We conclude that using this model
class to predict live crowd emotion may be impractical due to the need for knowledge of
individual agent personality parameters to simulate the crowd equilibrium. Directions for
future work are discussed.

Keywords: Networks, estimation, contagion, emotion, modeling
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Chapter 1

Introduction

This thesis presents efforts to model realistic crowd behavior and solve the state

estimation problem for predicting crowd state given crowd system measurements. In this

section, we address the specific motivation for this work, as well as previous work in relation

to solving this and similar problems. Finally, we give a summary of our findings and the

structural layout of work performed for this thesis.

1.1 Motivation

With the recent protests in the wake of the George Floyd incident [2], the public has watched

in dismay as either crowds have turned violent or the people’s right to assemble has been

squelched [77]. Finding the happy medium, where peaceful public outcry is enabled, is not

an easy task. On the one hand, public protests can easily induce mob violence, as we’ve

observed so very recently, and police have a responsibility to keep both people and property

safe from the angry hoard. On the other hand, the excuse of protecting public safety can

be used as an excuse to suppress public assembly and open, free speech altogether, as we

have also seen very recently in both Hong Kong [1] and Washington DC [37]. Developing

technologies that enable safe, peaceful public assembly, instead of weaponizing an armed

militia to subdue them, is the objective of our work.

To achieve this objective, we look to the field of Control Theory, specifically to prob-

lems involving crowd control. Crowd control is an emerging application of network control

theory that considers contexts in which crowds can be effectively managed. Crowds are

1
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typically modeled as networks, and managing them involves controlling the values of certain

variables within or throughout the network, often with limited and distributed sensing and

actuation mechanisms.

Examples of network control problems that focus on human networks include the

control of epidemics [58], [60], shaping opinion dynamics in social networks [63], [82], data-

driven marketing [52], and the spread of rumors [27] or (fake) news [81], [59], [3], [6], [61]

within a population. All of these applications involve driving the values of certain quantities

in networks of interacting people.

Nevertheless, some of these network control problems involve large numbers of people

that share physical proximity. This, then, becomes the primary feature we use to distinguish

the subclass of crowd control problems. These problems demand special attention because,

in contrast to the examples listed above, they often not only demand distinct models of

aggregate human behavior, but also involve aggregate sensing or actuation mechanisms that

cannot independently act on individual nodes in the network.

One important class of such crowd control problems that has received significant

interest is the evacuation problem; see for example [7], [66], [76], [78], [80]. These problems

are characterized by the crowd being in a confined area while under stressful circumstances,

and the objective is to quickly relocate the crowd. Models that drive this work not only

need to describe how the crowd’s physical properties, such as location and density, change

under various circumstances, but they also begin to characterize psychological properties

of the crowd as an entity (and not, for example, as a network or aggregate of individuals).

Information entropy, for example, is used in recent work to characterize “panic” as a property

of crowds in evacuation scenarios [85].

Although we hope to build from evacuation models in formulating the demonstration-

safety problem, there are a number of important differences. First, while evacuations consider

a single crowd, we envision a context where two distinct crowds are co-located and possi-

bly intermixed. This is the case, for example, when a public demonstration induces the

2
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spontaneous formation of another group, politically or ideologically opposed to the first, as

observed, for example, in postgame altercations at sporting events [30], [74] and at the 2017

Unite the Right rally in Charlottesville, VA [44].

Another important difference is that evacuation models typically consider pas-

sive controls, sometimes built into the architecture and design of meeting places, while

demonstration-safety problems may consider active controls, including the placement of

peacekeepers within the crowd or the use of crowd-dispersion mechanisms. Although current

practice tends to use such mechanisms to suppress and disrupt demonstrations–effectively

preventing the realization of the entire mode of expression–our ultimate goal is to understand

whether such mechanisms might effectively be employed in a more strategic and surgical

manner to support demonstration activity by effectively ensuring the safety of all members

of the crowd.

Finally, sensing mechanisms available in evacuation scenarios, such as video, may

not always be readily available in demonstration-safety situations. This is because evac-

uation, say of a sporting arena or nightclub, generally occurs at locations that can be

pre-instrumented, both with cameras and with the necessary lighting to make video use-

ful. Demonstrations, on the other hand, often occur spontaneously in arbitrary, outdoor

locations–and frequently at night. In such circumstances, obtaining real-time measurements

of the crowd state that can be used to effectively direct the placement of peacekeepers, and

the strategic local use of crowd dispersion mechanisms, may be challenging–or even a com-

plete roadblock for demonstration-safety. This project leverages previous work by the author

comparing the informativity audio versus video sensor data which suggests that audio is com-

parable to video for identifying crowd violence. This work will be the first step in formulating

a research program for predicting crowd emotional state by considering psychological model

creation and behavior identification and prediction for real crowds.

3
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1.2 Related Work

The study of crowds and crowd behavior can be found throughout several disciplines of

scientific research. The depth of this research, however, is still limited to an introductory

level in most fields. We sort current literature on crowd behavior and analysis into the

following categories: crowd psychology, control models, and crowded scene analysis.

1.2.1 Crowd Psychology

Theories on the psychology of crowds have been postulated in academic literature since as

early as the late 19th century [38]. However, in contemporary literature, little to no concrete

conclusions have been drawn or thoroughly tested on the subject. Some even refer to crowd

psychology as the “elephant man” of the social sciences, referring to its being something

of a social enigma [29]. Popular theories for modeling crowd behavior, as discussed by

[29], include contagion, emergence, and convergence theories. Contagion theory models the

spread of emotion through a crowd similarly to the spread of a disease through a population,

with the likelihood of an agent being “infected” by another crowd member’s emotion being

measured by some form of susceptibility factor. Emergence theories contend that crowd

behaviors emerge from a particular grouping of crowd members that otherwise would not be

present in the behavior of individuals (ie. the whole is not simply composed of the sum of the

parts) while convergence theory argues that crowds are the result of groups of like-minded

individuals converging to the same ideas, goals, and behaviors.

Contemporary research involving crowd psychology range from engineering design

for crowd evacuation [71], to sentiment extraction and identification from text analysis of

crowds on social media [50], [25], [40], to the proper policing of crowds at and around Euro-

pean football games [30], [74]. Additionally, crowd psychology may be used as a contextual

backdrop to inform ideas on general policy for public order policing [67], which is the main

interest of this research. Perhaps most relevantly, recent work on directly parameterizing

crowd emotions for simulation has been performed by [12], [13], [41], [84]. This work uses

4
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a contagion model to simulate the spread of emotion and utilizes many ideas developed by

literature published for video game development.

1.2.2 Control Models

A significant interest has been shown in the proper modeling of crowd movement during high

stress scenarios. One scenario is the optimal evacuation of a crowd during an emergency.

For details on the various proposed models for crowd evacuation see [7], [66], [76], [78],

[80]. In many of these models crowds are compared to fluids, governed by some form of fluid

mechanics, and they obey the law of conservation of mass. There is also a proposed model for

panic quantification–in association with crowd evacuation–based on principles of information

entropy [85]. Additionally, other movement based models have been proposed that attempt

to simulate crowd behavior based on an entropic path-integral model [34]. However, none of

the discussed models attempt to directly characterize crowd emotion nor make predictions

on crowd psychological state, which is the main goal of this project.

1.2.3 Crowded Scene Analysis

The rise of computer vision in machine learning has encouraged research across many fields

of study involving the automatic classification of images. When computer vision is applied

to video, i.e. multiple consecutive images in time, to detect specific behaviors of objects or

persons, it becomes the field of action identification [31]. In particular, the classification

and analysis of surveillance video has become increasingly popular as video surveillance

technology becomes more widespread and commonly used. Additionally, the growth of crowd

phenomena captured in these videos has led to development of crowded scene analysis and

abnormal or anomalous crowd behavior detection [39].

Proposed methods for crowd behavior detection include various forms of optical flow

[10], [11], [48], [57], [75], pixel behavior entropy calculation [68], and foreground-background

separation [83]. The identification of crowd violence can be classified as an extension of

5
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crowded scene analysis and thus far has only involved applications of computer vision tech-

niques. Examples of methods used to identify crowd violence through video are [15], [26],

[32], [36], [49], [51], [70], [73].

1.3 Contributions

In all of these cases, we see that although crowds have been studied in various ways and

for various purposes, the estimation of emotional state of a crowd remains unexplored. Our

work in this area builds on previous work to detect violence in crowds but seeks to predict

violence by estimating the emotional state leading up to outbursts. Our specific contributions

include:

1. Bringing together relevant models from a rich variety of disciplines,

2. Combining distinct models from the literature on crowd movement, emotional evolu-

tion, and opinion dynamics to create a novel crowd model,

3. Formulating the state estimation problem for this model,

4. Linearizing the model around its equilibrium point to build an algorithm that solves

the state estimation problem,

5. Demonstration that the solution built from the linearization works on the actual non-

linear system.

The remainder of this thesis will be structured as follows. In Chapter 2 we cover more

thoroughly the literature communities from which we build our crowd behavior model, then

in Chapter 3 we construct our model and note where it differs from the literature. Because

our model differs from the literature largely through the addition of non-linear components,

we then discuss methods for linearizing our crowd behavior model in Chapter 4. Using

this linearized model, we then build a state estimator and evaluate its effectiveness at state

prediction on both the linearized and non-linear crowd models given their system outputs.

6
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Finally, we discuss in Chapter 6 our conclusions, among which are that this model requires

unreasonable knowledge of individual crowd agent parameters, and propose directions for

future work.

7
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Chapter 2

Background

As this work is built from pre-existing models in the literature, we review the respec-

tive contributions made by each research community regarding each state variable in our

model. Background for modeling methodologies is given in four parts: individual person-

ality modeling, human emotion modeling, group opinion dynamics, and crowd movement

modeling.

2.1 Individual Personality

Personality modeling is central to modeling how humans behave, interact, and react to cer-

tain situations and stimuli. As a crowd is comprised of a group of individuals with potentially

different behavioral tendencies, it is necessary that we choose a model that represents the

differences in individuals that you may find in a real crowd. There have been many models

for human personality as posed by researchers in the field of human psychology. One sub-

class of commonly used personality models are type based models, where people are classified

into qualitatively different types based on certain behaviours. Some examples of type based

personality models include the Myer-Briggs type indicator model [53], type A/B personality

classification [20], and John L. Holland’s RIASEC vocational model [54]. The discrete nature

of these personality models, however, make them difficult to use quantitatively in numerical

modeling. Thus, a more continuous personality model is preferred for this research.

For a continuous model of personality, few personality models have been as widely

used and accepted as the Five Factor Model (FFM), or OCEAN model, of personality [45].

8
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This model proposes that an individual’s personality can be described by a five-dimensional

vector of real numbers, where each vector element describes a distinct personality factor for

that person. The five personality factors are described as follows, with descriptions for low

vs. high values for each factor:

• Openness: consistent/cautious vs. inventive/curious,

• Conscientiousness: easy-going/careless vs. efficient/organized,

• Extroversion: solitary/reserved vs. outgoing/energetic,

• Amiability: challenging/detached vs. friendly/compassionate,

• Neuroticism: secure/confident vs. sensitive/nervous

Conventionally, each personality value is bounded on the interval of [−1, 1] to give a notion

of high versus low amounts of a given personality factor, with neutral values being close to

zero.

One of the more useful characteristics of this model is its ability to treat individual

personalities as real valued vectors, which lends itself to useful operations attributed to

vector spaces, such as a mathematical measure of similarity through the dot product for

example. Consequently, the OCEAN model has been used to predict customer responses to

targeted advertising [43], and is even speculated to be one of the models used by Cambridge

Analytica to predict and manipulate responses to targeted political advertisements during

the US 2016 presidential elections [9]. Additionally, OCEAN parameters have been used to

model individual and crowd behavior and expression for simulation in artificial environments

such as video games [12], [13]. This model is also used to simulate other more specific

scenarios including political rallies and hazardous situations [41], [84].

Another useful feature of the OCEAN model is its ability to map an individual’s

personality to other personality features such as empathy [35] and resting emotional state

[46], indicative of one’s inherent or “natural” personality. These features are both useful for

modeling crowd behavior and will be discussed in greater depth in Chapter 3.

9



www.manaraa.com

2.2 Emotion

According to research in psychology, there are three major approaches to affect modelling of

human emotion [23]: categorical, dimensional and appraisal-based approaches. The categor-

ical approach claims that there exist a small number of emotions that are basic, hard-wired

in our brain and recognised universally [14]. However, one shortcoming of this approach is

that it does not always capture the complexity of human emotion responses which can be

subtle in their differences. The dimensional approach of emotion modeling posits that any

human emotion can be defined as a point in some emotion space, where each axis of this

coordinate space represents some nearly orthogonal component of emotion. In the appraisal-

based approach emotions are generated through continuous, recursive subjective evaluation

of both our own internal state and the state of the outside world (relevant concerns/needs)

[69]. However, due to the subjective nature of this approach it can be difficult to concretely

define emotions and emotional responses across all individuals. Because our model requires

consistency of emotional classification across all agents and a continuous space over which

emotions can evolve, we choose a dimensional approach to emotion modeling. For a more

rigorous survey of emotion modeling see [24].

This work uses the pleasure, arousal, dominance (PAD) model of emotion [47] to

characterize the spectrum of human emotion for crowd agents. This model supposes three

orthogonal real-valued axes for describing human emotional state, where each axis represents

the level of pleasure, arousal, and dominance respectively that a given agent is feeling. The

pleasure axis describes the either positive or negative feelings experienced by an agent and is

tied to an agent’s evaluation of their current situation, with positive values showing a positive

evaluation and vise versa. The arousal axis represents a level of mental activity ascribed to

a given agent, where negative values may denote states such as sleepy, non-energetic, bored,

relaxed, etc., and positive values attributed to high alertness, stimulated, etc. Finally, the

dominance axis represents an agent’s feelings of control where positive values indicate feelings

of influence, autonomy, control, etc., and negative values indicate feelings of submission, lack

10
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Octant P A D Octant P A D
Relaxed + - + Anxious - + -
Dependent + + - Disdainful - - +
Exuberant + + + Bored - - -
Docile + - - Hostile - + +

Table 2.1: Labels for each of the PAD space octants as given by [22]

of control, etc. For an overview of the PAD model for human emotion see [5].

This model for emotion is useful for it’s ability to characterize a continuous space for

emotion where a great number of simple and complex emotions can be described. In [22]

correlations are given between PAD values and emotions described by the OCC (Ortony,

Clore, Collins) model for human appraisal [56], as well as a general definition for emotions

found in each PAD octant as described in Table 2.1.

Another important aspect for modeling emotion dynamics is emotional contagion.

Much like how the spread of disease can be modeled by describing the change in a suscepti-

ble, infected, and recovered (SIR) agents [58], [60], we can also model the spread of emotion

through a crowd of connected agents using emotional contagion [21], where an agents sus-

ceptibility and ability to infect are described by their personality parameters. This method

of describing crowd emotion dynamics using emotional contagion is used by [12], [41], [84]

to model how emotions expressed by surrounding agents in a crowd affect individual agents.

This will be discussed in greater detail in Chapter 3.

2.3 Opinion

The field of opinion dynamics (OD) seeks to describe how opinions change over time in

a group of connected agents with various levels of influence over each other. The most

basic model for OD, called the French-DeGroot (FG) model [16], assigns stochastic weights

for each agent in relation to every other agent, including themselves, that represent the

level of influence each agents holds over every other agent in the simulation. We use the

11
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Friedkin-Johnson (FJ) model of opinion dynamics [19], [18], [17], being very similar to the

FG model except for one addition, which describes how an agent’s opinion changes given a

certain stubbornness value. This determines how likely an agent is to change their opinion in

relation to their original opinion at the start of the simulation. For a more in-depth overview

of the field of opinion dynamics in social networks, including a stability analysis for the FJ

model, the see [64], [65].

Typically, opinion dynamics models are applied to networks such as social media

environments or other internet based communications. However, in our case with live crowds,

we conjecture that an agent’s opinion is in many ways a crucial factor in how they will react

to the emoting of other agents around them. As such, we will need to determine some

measure of influence each crowd member would hold over every other crowd member, which

will be discussed further in Chapter 3.

2.4 Movement

One of the unique challenges of modeling live crowd behavior is determining how a crowd

member will move in a given scenario. In the controls community, there is a strong body

of literature for modeling crowd movement during high stress scenarios. As discussed, one

scenario is the optimal evacuation of a crowd during an emergency. For details on the various

proposed models for crowd evacuation see [7], [66], [76], [78], [80]. In many of these models

crowds are compared to fluids, governed by some form of fluid mechanics, and obey the

law of conservation of mass. Other movement based models include panic quantification–

in association with crowd evacuation–based on principles of information entropy [85] and

simulating crowd behavior using an entropic path-integrals [34].

Another strong group of literature for crowd based movement is found in the flocking

and active matter research communities, whose focus is often more general in attempting to

model many types of crowd phenomena such as flocks of birds [4], [62], [28], schools of fish

[33], groups of drones [79], active matter [42], etc. These models are useful for considering

12
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coordinated and semi-coordinated crowd efforts, which also allows for crowd formations and

particular groupings to occur. For a review of flocking algorithms and theory see [55].

In this research, we choose to model the movement of individual agents, as each agent’s

movement and behavior should be governed by the inner states of their emotion, opinion,

and personality respectively. An initial simplified model of movement is implemented to

describe how the these various states affect individual agent movement. However, a more

complex movement model may be implemented in future work that allows for more realistic

crowd groupings and crowd formations.

13
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Chapter 3

Crowd Behavior Model

In this chapter we define a new model dynamics for crowd emotion, movement, and

opinion respectively. Before discussing these models, however, we cover some preliminary

variable definitions. Additionally, we highlight where our model draws from the literature

and where we deviate to better describe our crowd behavior dynamics.

3.1 Preliminaries

To describe crowd behavior, we assume an agent based model, i.e. each crowd member

is described individually given a set of initial conditions and the collective behavior of the

individual crowd members describe our crowd dynamics. Furthermore, each agent is assigned

a fixed personality, defined by the OCEAN model [45] as discussed in Section 2.1, which

affects how certain agents influence and are influenced by other agents in the crowd. We

assume fixed personalities for agents due to the shorter time scale over which our simulations

are run.

3.1.1 OCEAN parameters

Define the set of OCEAN parameters p ∈ R5 for an individual as the vector

p = [ψO, ψC , ψE, ψA, ψN ]T (3.1)

where ψO, ψC , ψE, ψA, ψN represent the level of openness, conscientiousness, extroversion,

amiability, and neurotisicm respectively for a given agent. As is common practice, each

14
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parameter is bounded in the range of [−1, 1]. To describe the susceptibility of an agent

to being influenced by the emotions of other crowd members, we require some measure of

empathy, or the ability to understand and share the feeling of another, for each agent. In

psychological literature, empathy was found to be positively correlated will all five factors

of personality in the OCEAN model, with correlation values being drawn between the basic

empathy scale (BES) and personality factors. Thus, we also define the empathy ε ∈ R for

an agent as a linear combination of its OCEAN parameters as found in the literature [35]

ε = 0.354ψO + 0.177ψC + 0.135ψE + 0.312ψA + 0.021ψN . (3.2)

Due to our bounding of OCEAN parameters to in interval [−1, 1], agent empathy ε will also

be bounded on that same interval.

3.1.2 PAD model

We define the emotion for a given agent as the vector e ∈ R3 where e = [eP , eA, eD]T and

eP , eA, eD represent an agent’s current pleasure, arousal, and dominance respectively. We

bound the emotion values for each agent such that ||e|| ≤ 1, where || · || is the 2-norm.

Furthermore, the literature also defines a mapping from an agents personality score to their

resting emotional state [46], ie. the natural emotional state an agent tends to when otherwise

unaffected. Let the mapping from an agent’s OCEAN parameters to its resting emotion

vector e∗ be defined as

e∗ = Bp =


e∗P

e∗A

e∗D

 (3.3)

where B ∈ R3×5 is a set of constants defined in [46] based on a mapping of OCEAN per-

sonality scores to resting emotional state and e∗P , e
∗
A, e

∗
D are the resting values of pleasure,

arousal, and dominance respectively for a given agent.
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3.1.3 Opinion

Define o ∈ Rn as the vector of n opinions/viewpoints of an agent relating to specific issues,

where each element represents separate issue. Positive values denote a supporting viewpoint

and negative values an opposing viewpoint. All opinion values are bounded between [−1, 1].

3.1.4 Position

We define the position of an agent as x ∈ R2. For this study, we choose a 2-dimensional

movement space as many crowd situations can be modeled in as agents moving in the same

plane. We can imagine exceptional circumstances where it may be necessary to model crowd

movement in x ∈ R3, such as in a mall environment with multiple tiers of movement, but

for simplicity we only consider x ∈ R2.

3.1.5 Distance penalty

To model how greater distances reduce the relative affects of agents on each other, we define

a distance penalty from agent i to agent j as

dij = exp(−η||xi − xj||) (3.4)

where η is a positive real constant controlling the penalty rate.

3.2 Emotion dynamics

In this section we define the emotion dynamics for each crowd member i. To begin, we define

the discrete time emotion dynamics for crowd member i as

ei[k + 1] = ei[k] + ∆ei[k] (3.5)

where ∆ei[k] represents the change in emotion for agent i at time k of the simulation. We
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define ∆ei[k] in two parts

∆ei[k] = Ai(ei[k]− e∗i ) + λ(si, ej 6=i) (3.6)

where Ai(ei[k] − e∗i ) is a linear time invariant (LTI) model that ensures agent’s emotion

converges to its defined resting emotion state[46] e∗ if otherwise unaffected. The linear

dynamics for emotional convergence are defined by Ai

Ai =


−αni 0 0

0 −βni 0

0 0 −γni

 (3.7)

where α, β, γ are real positive constants controlling the rates of convergence for pleasure,

arousal, and dominance respectively. Because negative values for the parameter neurotisicm,

ψN , are associated with emotional stability, we define ni for a crowd member as

ni =
−ψNi + 1

2
(3.8)

which scales ni to to the interval [0, 1].

The second term λ(si, ej 6=i) represents the effect of emotional contagion from other

crowd members. For the effect of contagion on agent i with respect to every other agent j

we define an initial model for emotional contagion as

λ(si, ej 6=i) =
1

N − 1

N∑
j 6=i

dijejqjsi (3.9)

where N is the number of agents in the crowd, dij is the distance penalty between two agents,

ej is the current emotional state of crowd member j, qj =
ψE
j +1

2
is the extroversion of agent

j scaled to the interval [0, 1], and

si =
εi + 1

2
(3.10)
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is an agent’s susceptibility to being influenced by other’s viewpoints and emotions. This

initial model, similar to the models posed by [21], [12], [41], and [84], is inspired by the SIR

model of disease spread through a population where an agent’s extroversion or expressiveness

qj measures their capability to infect other agents with their emotion, and the susceptibility

of agent i is defined by their empathy as measured by their OCEAN parameters.

However, this model fails to account for how other agent’s opinions, and their subse-

quent expression of said opinions, affects the change in emotion for another given agent. For

example, according to the above model if agent j is approving of a certain sentiment or idea

expressed at a political rally, they will express a positive emotion and thereby begin to infect

other agents with their same emotion. But, consider the case where agent i is in complete

opposition to the opinion of the expressive agent j. In this case, the sentiment of expressing

approval and positive emotion would evoke a negative reaction in agent i according to their

opinion. Thus, the above model, in some regard, requires that crowd members opinion be

somewhat homogeneous in order to simulate realistic behavior.

To account for more complex behavior including agent opinion, we add a sign change

to the model. By taking the dot product of two agent’s opinion vectors we can measure how

similar each agent is in opinion to another agent, with positive values indicating agreement

and negative values disagreement. Thus, the sign of the dot product of two agent opin-

ion vectors can inform the model how a particular agent may react to another’s expressed

emotion. However, simply flipping the sign of the emotion may also yield unrealistic crowd

behavior, such as violence only spreading among agents who agree with each other. This

introduces the idea that certain emotions are positive contagious, i.e. they will always infect

other agents with that same emotion regardless of opinion, while other emotions may be

positive or negative contagious, i.e. agents may be infected with the opposite emotion the

depending of the similarity of agent opinion. To decide which emotions are positive conta-

gious and which emotions are positive or negative contagious, we refer to the emotion label

for each octant in the PAD space as shown in Table 2.1. For our model, we choose that
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emotions where the sign of the pleasure and arousal are the same (e.g., the hostile, bored,

exuberant, and docile octants) always add in the contagion model, whereas emotions with

differing signs in arousal and dominance (e.g., the relaxed, anxious, dependant, disdainful

octants) are subject to sign change dependant on opinion. This sign change is reflected in

the improved emotional contagion equation

λ(si, ej 6=i) =
1

N − 1

N∑
j 6=i

dijejqjsihij (3.11)

where hij ∈ {−1, 1} determines whether agent j contributes positively or negatively to the

emotion of agent i defined by

hij =
(
1−ReLU

[
−sgn(eAj

eDj
)− sgn(oTi oj)

])
. (3.12)

3.3 Movement dynamics

We define the movement dynamics for an agent i as

xi[k + 1] = xi[k] + ∆xi (3.13)

we define the velocity ∆xi of an agent in two parts, the first being a diffusion component

which encourages agents to spread out in the movement space while a second emotional

component drives agents to move either towards or away from each other depending on

relative emotion and opinion

∆xi =
−−−−−−−→
Diffusioni +

−−−−−−→
Emotioni. (3.14)

The component of an agent’s movement relating to the natural tendency for people to spread
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out in a given space is defined as

−−−−−−−→
Diffusioni =

ρ

N − 1

N∑
j 6=i

dij(xi − xj) (3.15)

where ρ is a positive real constant controlling the diffusion rate. For the sake of simplicity,

we assume a bounded area (by peacekeepers, physical boundaries, etc.). A flocking model

of group movement may be applied for future work.

The movement component relating to an agent’s emotion is defined as

−−−−−−→
Emotioni =

χ

N − 1

N∑
j 6=i

dij(xj − xi)||ej||qjhij (3.16)

where χ is a positive real constant controlling the emotion attraction rate, qj =
ψE
j +1

2
is

the extroversion of agent j, which is a measure of the level at which they express their

emotions scaled from [0, 1]. We apply the same additive rules that are implemented for the

the emotional contagion term in Equation 5.26

3.4 Opinion dynamics

We use the Friedkin-Johnsen (FJ) model of opinion dynamics,

oi[k + 1] = νωi

N∑
j=1

wij[k]oj[k] + (1− νωi)u (3.17)

where ωi =
ψO
i +1

2
is an agent’s openness to being influenced by other’s viewpoints, ν ∈ R ≤ 1

is a situational parameter, independent of agents, that determines how hardened an agent’s

viewpoint will be depending on a given scenario, u = oi(0) is the agent’s initial viewpoint

at the beginning of the simulation, and wij is the weight that agent i places on the opinion

of agent j. Let wii = 1 − ωi represent the weight agent places on their own opinion(ie. the

stubbornness of the agent). For the effect that other agents may have on opinion, let us first
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define an influence score for agent j on agent i as

Iij = a
pTi pj
||pTi pj||

+ b
eTi ej
||eTi ej||

+ c
oTi oj
||oTi oj||

(3.18)

where a, b, c are positive real constants that determine how much importance agents place on

personality, emotion, and opinion similarities respectively in determining opinion influence.

Now, let us define the weights for agents where i 6= j as

wij =
ωi
Wj 6=i

(dijqjIij + |Wmin|) (3.19)

Wj 6=i =
N∑
j 6=i

(dijqjIij + |Wmin|) (3.20)

Wmin = min
j 6=i

dijqjIij (3.21)

This ensures that
∑N

j=1wij = 1 as is required by the FJ model.

3.5 Complete model

In summary, our crowd model is described by the following state dynamics for each individual

agent i with respect to every other agent j, where i, j = 1, 2, . . . , N , with N being the number

of agents in the crowd.

3.5.1 Emotion

ei[k + 1] = ei[k] + ∆ei[k] (3.22)

∆ei[k] = Ai(ei[k]− e∗i ) + λ(si, ej 6=i) (3.23)
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λ(si, ej 6=i) =
1

N − 1

N∑
j 6=i

dijejqjsihij (3.24)

hij =
(
1−ReLU

[
−sgn(eAj

eDj
)− sgn(oTi oj)

])
. (3.25)

3.5.2 Movement

xi[k + 1] = xi[k] + ∆xi[k] (3.26)

∆xi[k] =
−−−−−−−→
Diffusioni +

−−−−−−→
Emotioni (3.27)

−−−−−−−→
Diffusioni =

ρ

N − 1

N∑
j 6=i

dij(xi − xj) (3.28)

−−−−−−→
Emotioni =

χ

N − 1

N∑
j 6=i

dij(xj − xi)||ej||qjhij (3.29)

3.5.3 Opinion

oi[k + 1] = νωi

N∑
j=1

wij[k]oj[k] + (1− νωi)u (3.30)

wij =
ωi
Wj 6=i

(dijqjIij + |Wmin|) (3.31)

Iij = a
pTi pj
||pTi pj||

+ b
eTi ej
||eTi ej||

+ c
oTi oj
||oTi oj||

(3.32)
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Wj 6=i =
N∑
j 6=i

(dijqjIij + |Wmin|) (3.33)

Wmin = min
j 6=i

dijqjIij (3.34)

3.6 Crowd Simulation Results

To ensure that our model exhibits believable crowd behaviors, we simulate our crowd model

as described in Section 3.5. In figures 3.1 and 3.2 we show two scenarios with the crowd’s

location, opinion, and emotion states plotted at ten-step intervals. The purpose of these

simulations is to show the ability for our model to exhibit both violent and non-violent

behavior depending on certain parameter settings and initial conditions. In both scenarios,

each agent is assigned only one opinion, where oi ∈ R. We denote each agent’s opinion by

the shape of their marker, where a negative and positive valued opinion is represented by a

square or a circle respectively. We show the magnitude of an agent’s opinion by the relative

size of their marker. Each agent’s location is plotted in R2 and their location at a given

time step is shown by their assigned marker. Finally, to give a general idea of the agent’s

emotional state, we assign each agent a color according to which PAD octant the emotion

falls in, as described in Table 2.1, with the appropriate colors shown in Table 3.1.

In Figure 3.1 we show a simulation where 25 agents are give a random personality p,

location x, opinion o, and initial emotion e. In this scenario, we see that agents of positive

valued opinions (circles) begin to gather physically and share emotional contagion of disdain

amongst each other, while those with negative opinions (squares) are eventually repelled by

the gathering of the positive opinion agents, causing them to disperse.

In Figure 3.2 we show a similar simulation, with random personalities p and locations

x; however, we choose that every third agent in the simulation is initialized with both an

extremely hostile emotion, where e = [P,A,D] = [−1, 1, 1], and an extreme opinion where
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Octant P A D Octant P A D
Relaxed + - + Anxious - + -
Dependent + + - Disdainful - - +

Exuberant + + + Bored - - -

Docile + - - Hostile - + +

Table 3.1: Labels for each of the PAD space octants as given by [22], with added color to
text to denote the general emotion state of agents shown in Figures 3.1 and 3.2.

o ∈ {−1, 1}. The remaining agents given random initial emotions and opinions. We see

that in this case we see the hostile emotion “infect” each crowd agent regardless of opinion,

resulting in a strong gathering of hostile emotion between agents of differing opinions which

can be interpreted as violence. Thus, showing our model can exhibit both violent and non-

violent behavior in a believable manner.
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Figure 3.1: A simulation of 25 agents initialized with all random parameters and initial
states. Opinion sign and magnitude is represented by shape and size respectively, position
is plotted in R2, and the emotion value represented by color as described in Table 3.1.
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Figure 3.2: A simulation of 25 agents initialized with all random parameters and initial
states, except for every third agent which is initialized with a strongly hostile emotion and
strong opinion o ∈ {−1, 1}. Opinion sign and magnitude is represented by shape and size
respectively, position is plotted in R2, and the emotion value represented by color as described
in Table 3.1.

26



www.manaraa.com

Chapter 4

Linearized Crowd Model

As the model described in Chapter 3 is clearly non-linear, particularly in the charac-

terization of emotion dynamics, this chapter will describe a linearized version of said model.

We will then use this linearized model to solve the state estimations problem as posed in

Chapter 5.

4.1 Preliminaries

In this section we review some preliminaries necessary for model linearization.

4.1.1 Jacobian Matrix

The Jacobian matrix is a key component in the linearization of non-linear systems and is

defined as the matrix of first order partial derivatives of the system

f(x) = [f1(x), f2(x), . . . , fn(x)] (4.1)

as follows:

J(x) =



∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1
∂xn

(x)

∂f2
∂x1

(x) ∂f2
∂x2

(x) . . . ∂f2
∂xn

(x)

...
...

. . .
...

∂fn
∂x1

(x) ∂fn
∂x2

(x) . . . ∂fn
∂xn

(x)


(4.2)
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4.2 Model Linearization

While comprehensive analysis of non-linear systems is typically difficult, we can draw some

understanding of the local behavior of our non-linear model by linearizing it around a valid

equilibrium point. For this exercise, we assume that the position of each agent at any given

time step k is known, and that the opinion oi for each agent i is fixed for the duration of

the simulation, making the opinion a parameter in our emotion dynamics equations rather

than an evolving state. Thus, we focus our attention on the emotion dynamics of the crowd

as defined in Chapter 3

ei[k + 1] = ei[k] + ∆ei[k] (4.3)

∆ei[k] = Ai(ei[k]− e∗i ) + λ(si, ej 6=i) (4.4)

λ(si, ej 6=i) =
1

N − 1

N∑
j 6=i

dijejqjsi
(
1−ReLU

[
−sgn(eAj

eDj
)− sgn(oTi oj)

])
(4.5)

However, one difficulty arises when taking the partial derivative of Equation 4.5 due to

the non-differentiable functions of ReLU(x) and sgn(x), which is necessary for constructing

the Jacobian matrix. To circumvent this, we can approximate both functions with their

differentiable counterparts where

ReLU(x) ≈ 1

τ
ln (1 + exp (τx)) , τ >> 1 (4.6)

sgn(x) ≈ 2

1 + exp(−τx)
− 1 , τ >> 1 (4.7)

which allows us to replace the term 1− ReLU
[
−sgn(ejAejD)− sgn(oTi oj)

]
in Equation 4.5
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with

hij = 1− 1

τ
ln

[
1 + exp

(
τ

[(
2

1 + exp(−τeAj
eDj

)
− 1

)
−
(

2

1 + exp(−τoTi oj)
− 1

)])]
(4.8)

In the following subsections we discuss the construction of the Jacobian for the system

described in Equation 4.3 using the above substitutions, methods for finding the equilibrium

of said system, and the final construction of the linearized crowd emotion dynamics model.

4.2.1 Emotion Dynamics Jacobian Matrix

To construct the Jacobian matrix for 4.3 we must first construct the complete list of nonlinear

equations f(e). Since Equation 4.3 actually describes the evolution of three emotional states

for each agent, namely their pleasure, arousal, and dominance states, the function f(e) will

be a function mapping R3n → R3n where

f(ei) =


ėPi

ėAi

ėDi

 =


ePi

[k] + ∆ePi
[k]

eAi
[k] + ∆eAi

[k]

eDi
[k] + ∆eDi

[k]

 =


ePi

[k]− αni(ePi
[k]− e∗Pi

) + λP (si, ePj 6=i
)

eAi
[k]− βni(eAi

[k]− e∗Ai
) + λA(si, eAj 6=i

)

eDi
[k]− γni(eDi

[k]− e∗Di
) + λD(si, eDj 6=i

)

 (4.9)

and λP , λA, λD represent the contagion of pleasure, arousal, and dominance respectively from
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every other agent j in the crowd.

λP (si, ePj 6=i
) =

1

N − 1

N∑
j 6=i

dijePj
qjsihij

λA(si, eAj 6=i
) =

1

N − 1

N∑
j 6=i

dijeAj
qjsihij

λD(si, eDj 6=i
) =

1

N − 1

N∑
j 6=i

dijeDj
qjsihij.

(4.10)

Thus, we can describe the Jacobian for the system as

J(e) =



∂ėPi

∂ePj

∂ėPi

∂eAj

∂ėPi

∂eDj

∂ėAi

∂ePj

∂ėAi

∂eAj

∂ėAi

∂eDj

∂ėAi

∂ePj

∂ėAi

∂eAj

∂ėAi

∂eDj


(4.11)

where

∂ėPi

∂ePi

= 1− αni ,
∂ėAi

∂eAi

= 1− βni ,
∂ėDi

∂eDi

= 1− γni (4.12)

∂ėPi

∂eAi

=
∂ėPi

∂eDi

=
∂ėAi

∂ePi

=
∂ėAi

∂eDi

=
∂ėDi

∂ePi

=
∂ėDi

∂eAi

= 0 (4.13)

∂ėAi

∂ePj

=
∂ėDi

∂ePj

= 0. (4.14)

To simplify further partial derivative expressions we define

φj = −
(

2

1 + exp(−τeAj
eDj

)
− 1

)
−
(

2

1 + exp(−τoTi oj)
− 1

)
(4.15)
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and

θj =
2τ exp(τ(φj − eAj

eDj
))

(1 + exp(τφj))
(
1 + exp(−τeAj

eDj
)
)2 (4.16)

making

∂ėPi

∂ePj

=
dijqjsi
N − 1

(
1− 1

τ
ln (1 + exp(τφj))

)
, j 6= i (4.17)

∂ėAi

∂eAi

=
dijqjsi
N − 1

(
1 + eAj

eDj
θj −

1

τ
ln (1 + exp(τφj))

)
, j 6= i (4.18)

∂ėDi

∂eDj

=
∂ėAi

∂eAj

(4.19)

∂ėPi

∂eAj

=
dijqjsi
N − 1

eDj
ePj
θj , j 6= i (4.20)

∂ėPi

∂eDj

=
dijqjsi
N − 1

eAj
ePj
θj , j 6= i (4.21)

∂ėAi

∂eDj

=
dijqjsi
N − 1

e2Aj
θj ,

∂ėDi

∂eAj

=
dijqjsi
N − 1

e2Dj
θj , j 6= i. (4.22)

Using this Jacobian we can now linearize our crowd emotion model around a valid equilibrium

point.

4.2.2 Emotion Dynamics Equilibrium

In order to solve for the equilibrium point of 4.3, we set ei[k+ 1] = ei[k] yielding ∆ei[k] = 0.

Thus

Ai(ei[k]− e∗i ) + λ(si, ej 6=i) = 0 (4.23)
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However, because each agent i has three emotional states, where the contagion of all three

states depends on the arousal and dominance states of every other agent j, we have that

solving for the root of the system

F (e) =



−αn1(eP1 − e∗P1
) + λP (s1, ePj 6=1

)

...

−αnN(ePN
− e∗PN

) + λP (sN , ePj 6=N
)

−βn1(eA1 − e∗A1
) + λA(s1, eAj 6=1

)

...

−βnN(eAN
− e∗AN

) + λA(sN , eAj 6=N
)

−γn1(eD1 − e∗D1
) + λD(s1, eDj 6=1

)

...

−γnN(eDN
− e∗DN

) + λD(sN , eDj 6=N
)



= 0 (4.24)

is non-trivial, even in the case of a two person crowd, due to the terms λP , λA, λA which

all contain the state variables eAj
, eDj

inside of our ReLU(x) and sgn(x) approximations as

defined in Equations 4.6 and 4.7 respectively. We can, however, run our non-linear system

until it reaches equilibrium and use this simulated equilibrium point to linearize our non-

linear system.

4.2.3 Linearized Model

Now that we have an expression for the Jacobian of our system and method for numerically

approximating the equilibrium point, we can construct a linearized model. Let eeq be the

equilibrium point of our non-linear crowd emotion dynamics where

eeq = [eP1 , . . . , ePN
, eA1 , . . . , eAN

, eD1 , . . . , eDN
]T (4.25)
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then, our linear model becomes

ẽ[k + 1] = Qẽ[k] (4.26)

where

Q = J(eeq) (4.27)

and

ẽ[k] = e[k]− eeq. (4.28)

It should be noted that our linearized model will have a shifted coordinate system where the

new equilibrium is now centered at the origin. Using this model we can now build a state

observer, which will be discussed in Chapter 5.
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Chapter 5

State Estimation

In this chapter we propose a solution to the state estimation problem for the model

formulated in Chapter 3 using its linearized form as constructed in Chapter 4. We begin

by reviewing the fundamentals of state estimation and methods for building a linear state

observer. We then build a state observer from the linearized crowd emotion model and

evaluate its effectiveness at state prediction on both our linearized and non-linear model.

5.1 Building a State Observer

In control theory, a system is considered observable if its internal states can be inferred from

knowledge of the system’s outputs. Let our system take the form

ε[k + 1] = Qε[k]

y[k] = Cε[k]

(5.1)

where ε ∈ R3N is our emotion state vector where N is the number of agents in the crowd,

Q ∈ R3N×3N is the linear state evolution matrix derived from the Jacobian of our non-linear

model as defined in Chapter 4, y ∈ R3M is our system output vector where M is the number

of crowd sensors, and C ∈ R3M×3N is the state output matrix. We define the state output
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matrix C for our model as follows

C =



c11 . . . cN1 0 . . . 0 0 . . . 0

0 . . . 0 c11 . . . cN1 0 . . . 0

0 . . . 0 0 . . . 0 c11 . . . cN1

...
...

...
...

...
...

...
...

...

c1M . . . cNM 0 . . . 0 0 . . . 0

0 . . . 0 c1M . . . cNM 0 . . . 0

0 . . . 0 0 . . . 0 c1M . . . cNM



(5.2)

where cij = 1
rij

and rij ∈ R > 0 is the distance of crowd member i to sensor j. We use this

model for sensor measurement as it is analogous to a model for measuring sound pressure

levels using acoustic sensors. We choose an acoustic sensor model as recent work [8] shows

that general crowd mood may be reasonably identified using acoustic measurements. This

state output matrix also assumes that the crowd emotion states are ordered as

ε = [εP1 , . . . , εPN
, εA1 , . . . , εAN

, εD1 , . . . , εDN
, ]T (5.3)

making the measurement of crowd, pleasure, arousal, and dominance independent of each

other where

y = [ε̄P1 , ε̄A1 , ε̄D1 , . . . , ε̄PM
, ε̄AM

, ε̄DM
]T (5.4)

and ε̄Pj
, ε̄Aj

, ε̄Dj
are the weighted sums of of pleasure, arousal, and dominance respectively

for the general crowd as measured from sensor j.

For state estimation, we use a Luenberger observer model defined by

ε̂[k + 1] = Qε̂[k] + L(y[k]− ŷ[k])

ŷ[k] = Cε̂[k]

(5.5)

35



www.manaraa.com

where ε̂ is our state estimate, ŷ is our measurement estimate, and L ∈ R3N×3M is chosen

such that the error ē[k] = ε[k]− ε̂[k] converges to zero as k →∞. By solving for ē[k + 1] it

is easy to show that

ē[k + 1] = ε[k + 1]− ε̂[k + 1] = (Q− LC)ē[k] (5.6)

proving that the system will asymptotically converge to zero error so long as the spectral

radius of Q−LC is less than one. We use the steady state Kalman gains matrix as calculated

from the Kalman filter [72] as our choice for L in the state observer model..

As mentioned, we use our linearized crowd emotion dynamics model as defined in

Chapter 4 for Q. However, since testing this state observer only requires a set of mea-

surements y from the real system, we can build a state observer using the linearized crowd

emotion model, then test its effectiveness at predicting the states given output from the

non-linear crowd emotion model. To account for the shifted equilibrium of the linearized

system, the outputs of our non-linear crowd model are shifted to reflect an origin centered

equilibrium point. This, however, mandates the necessity for knowing the true equilibrium

point of the system in order to estimate its state. We discuss the implications of such a

necessity in the following section.

5.2 Equilibrium Point Shifting of Non-linear Model

As remarked in Chapter 4, our linearized crowd model will have a shifted coordinate system

from our non-linear crowd model, which may have a non-zero equilibrium point. Since our

state observer is built from our linearized model, we must account for this shift accordingly

when making state estimations for our non-linear system. Let our non-linear model be
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defined as

ε[k + 1] = f(ε[k])

y[k] = Cε[k]

(5.7)

where ε[k] is the value of the crowd emotion states at time step k, f(ε) is our non-linear

model, C is the same known state output matrix as defined in Section 5.1, and y is the system

output. Furthermore, let the equilibrium point of this system be non-zero and defined as

ε∗ = f(ε∗) (5.8)

Now, let

ε[k] = ε∗ + δε[k]

y[k] = C(ε∗ + δε[k])

(5.9)

where δε is some shifted ε such that it reaches equilibrium at the origin. Then

ε[k + 1] = ε∗ + δε[k + 1] = f(ε∗ + δε[k + 1]) (5.10)

making our shifted system notated as

δε[k + 1] = f(ε∗ + δε[k + 1])− ε∗

δy[k] = Cδε[k]

(5.11)

Thus, to correct for the non-zero shift in our non-linear system outputs we shift δy accordingly

δy[k] = Cδε[k] = y[k]− Cε∗ (5.12)
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making the measurements from our non-linear system compatible with our state observer.

To plot the results and compare our state estimate with values of the non-linear system

states, we simply add the equilibrium shift back to the state predictions, making our state

prediction error for the non-linear system

ē[k] = [k]− (ε̂[k] + ε∗). (5.13)

5.3 Necessity of Equilibrium Knowledge

We propose the following theorem in relation to the necessity of equilibrium knowledge for

our non-linear system.

Theorem 1. Let f(ε) : Rn → Rn describe the non-linear state evolution of ε ∈ Rn. Fur-

thermore, let ε∗ describe a non-zero equilibrium point for f(ε), given some initial state ε0,

such that f(ε∗) = ε∗. If ε∗ is unknown, or incorrectly assumed, then state estimation by

Luenberger observer will converge to a constant non-zero error.

Proof. For the system f(ε) : Rn → Rn, let ε̃∗ be an incorrect estimate of the equilibrium,

given some initial condition ε0, such that

ε[k]− ε̃∗ = b 6= 0 ; k →∞. (5.14)

Furthermore, let our non-linear system output be shifted accordingly to allow for linear state

estimation

y[k] = C(ε[k]− ε̃∗) (5.15)

where y ∈ Rm is the output of the system and the state output matrix C ∈ Rm×n is known,
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making the error in our state estimations defined as

ē[k] = ε[k]− ε̃∗ − ε̂[k] (5.16)

where ε̂[k] is our state estimate at time step k. Let our discrete time Luenberger observer

then be defined as

ε̂[k + 1] = Qε̂[k] + L(y[k]− ŷ[k])

ŷ[k] = Cε̂[k].

(5.17)

where Q ∈ Rn×n represents the correct linearization of the system f(ε) and L ∈ Rn×m is

chosen such that Q−LC is asymptotically stable at the origin. By substituting for y and ŷ

in the state estimation equation we have

ε̂[k + 1] = Q̂[k] + LC(ε[k]− ε̃∗ − ε̂[k]) (5.18)

and applying Equation 5.14 as the system f(ε) reaches equilibrium yields

ε̂[k + 1] = Qε̂[k] + LC(b− ε̂[k]). (5.19)

To solve for the steady state dynamics of this system we set ε̂[k+ 1] = ε̂[k] and solve for ε̂[k]

which yields

ε̂∗ = (I −Q+ LC)−1LCb (5.20)

where ε̂∗ is the steady state value of our state observer. Consequently, the error of our state

predictions will be driven to

ē = ε− ε̃∗ − ε̂∗ = b− (I −Q+ LC)−1LCb (5.21)
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ē =
(
I − (I −Q+ LC)−1LC

)
b (5.22)

as k → ∞. Thus, our system will converge to a non-zero error so long as knowledge of the

equilibrium is incorrect.

Because knowledge of the true equilibrium is required for zero error convergence, we

must consider the practical application and limitations of this model class. In particular,

as our model requires knowledge of the crowd personality parameters to simulate the true

equilibrium point, we recognise the difficulty in obtaining such information in a live crowd

scenario.

However, given these practical limitations, the purpose of this research is to explore

the conditions under which crowd state estimation may be achievable. Thus, having shown

that equilibrium knowledge is necessary for zero error convergence, we perform a set of

simulated experiments using our model to simulate crowds and observe the error convergence

of our Luenberger observer given a set of measurements y from the real system.

5.4 State Estimation Simulated Results

This section shows the results from building and testing a state observer on simulated data

for a multi-agent crowd. In our results, we show state estimation for random configurations

of multi-agent crowds where personalities, locations, and opinions are randomly chosen. We

evaluate our state observer performance on simulated crowd data from our non-linear model

and examine when high and low performance may be expected.

5.4.1 Simulation Methods

In this section we show the numerical results of testing our state observer on simulated data.

To start, we choose a set of random parameter values for each agent in the crowd. We then

approximate the equilibrium point for each random multi-agent system by simulating the
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non-linear model until it reaches equilibrium x∗ = x[k] where

||x[k − 1]− x[k]|| < ε (5.23)

and ε is some tolerance of change. We then use this equilibrium point to linearize our non-

linear system as described in Chapter 4. After linearization, the steady state Kalman gains

K are calculated for each system using a Kalman filter. Finally, we substitute K for L in our

state observer model as defined in Section 5.1 and test the convergence of our state estimator

to the true state values over time starting with a random guess x̂0 for the states and given

y for both linearized and non-linear systems. We discuss our findings below.

5.4.2 Comparing Linearized and Non-linear System Results

Figure 5.1 shows the convergence of our state observer to the true state values over time for

our linearized system and its non-linear counterpart. Parameter values for both systems are

identical as is the initial guess for the states x̂0. As expected, our state observer performs

well on the linearized system, which is characteristic of its performance on all linearized

systems, and the state error approaches zero as k → ∞. We also see that the same state

observer performs well on the non-linear system and steadily converges to the true state

of the system, as shown in 5.1(b). This, however, is not characteristic of its performance

on all non-linear systems, as shown in Figure 5.3, where some parameters lead to slow or

irregular convergence. We even see in 5.3(b) that some parameter settings may lead to

high outlier error. We hypothesize that this error is caused by the contribution of the non-

linear component (ie. the emotional contagion) being larger than the linear contribution of

the emotion model and test this hypothesis in the following section. Finally, we test the

robustness of our state observer to Guassian noise, as shown in Figure 5.2. We add noise to

the system measurements y and still maintain error convergence even at levels of 10% noise,
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(a)

(b)

Figure 5.1: An example of emotion state predictions (dotted lines) versus actual state values
(solid lines) for a linearized emotion model (a) and its non-linear version (b) over time using
the same state observer for a two-agent crowd system.
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(a)

(b)

Figure 5.2: State observer predictions for the same systems shown in Figure 5.1 with 10%
Guassian noise added to system measurements. Our linear system predictions are shown in
(a) and non-linear system predictions shown in (b).
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(a)

(b)

Figure 5.3: The root-mean-square error of the actual versus predicted states for 50 randomly
generated systems, with individual RMS error shown in (a) and general statistics shown in
(b).
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although the error level is increased as expected.

5.4.3 Comparing Non-linear System Predictions of Close vs. Far Agents

In this section we test our hypothesis that the contribution of the non-linear component of

our crowd emotion model is the cause for the increase in our state prediction error depending

on system parameters. We consider the non-linear emotion dynamics model as described in

Chapter 3

ei[k + 1] = ei[k] + ∆ei[k] (5.24)

∆ei[k] = Ai(ei[k]− e∗i ) + λ(si, ej 6=i) (5.25)

λ(si, ej 6=i) =
1

N − 1

N∑
j 6=i

dijejqjsi
(
1−ReLU

[
−sgn(ejAejD)− sgn(oTi oj)

])
(5.26)

where ∆ei[k] is comprised of two components, a linear component Ai(ei[k]− e∗i ) and a non-

linear component λ(si, ej 6=i). To test the effect that the non-linear component has on our

state observer predictions, we took the same set of random initial parameters chosen for

comparing predictions on linear and non-linear systems as shown in Figures 5.1-5.2 and

manually set the distance of the agents from each other to be double the original distance.

By increasing the distance between agents we increase the distance penalty dij on emotional

contagion as calculated in Equation 5.26, allowing for the linear term to dominate. As a

result, Figure 5.4 shows a more consistent convergence rate for the same two-agent systems

with agents further apart from each other, confirming our hypothesis.
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(a)

(b)

Figure 5.4: The root-mean-square error of the state predictions versus the actual states of the
same systems from Figure 5.3 except all agent distances to each other are doubled, causing
the linear component of the emotion dynamics to dominate. (a) shows the individual RMS
error while (b) shows general statistics of the state prediction error.
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5.4.4 State Estimation with Unknown Personalities

Despite the necessity of equilibrium knowledge for zero-error convergence, we may still con-

sider a scenario where the true equilibrium of the crowd is known but the exact parameter

values for all crowd members is unknown. In this case, instead of using the true personality

parameters for crowd agents we assume incorrectly that all agent’s personality scores are

homogeneous at an average OCEAN personality parameter value of zero, resulting in all

scaled personality parameters used in the model to be set at 0.5. We also assume that the

sign of each agent’s opinion is known, ie. what “team” each agent is on. We then linearize

the model around the true equilibrium point of the system and examine the state estimation

convergence for our approximated model.

In Figure 5.5 we show an example of the emotion states over time for a two-agent

crowd and the corresponding state estimates given the linearized system Q where all scaled

personality parameters are assumed to be homogeneous. Additionally, we show in Figure 5.6

the root-mean-square (RMS) error of the true state values and state estimates over time for

1,000 random simulations with the same assumption of average personality parameters given

to construct Q. We can see that even when incorrectly guessing the personality parameters

for the crowd, but given the true equilibrium point and sign of each agent’s opinion score,

we can achieve zero error convergence in our state estimates. It should also be noted that

the error in the state estimation example shown in Figure 5.5 converges significantly before

the system reaches equilibrium, which is characteristic for all two-agent systems tested.

Repeating this experiment for a 20-agent crowd system (60 emotion states) yields similar

results in error convergence.

5.4.5 Larger Crowds

We show the effectiveness of our state observer in predicting the emotional state of a larger

crowd of 20 agents in Figures 5.7 and 5.8. We see that both the linearized system in Figure
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Figure 5.5: An example of emotion state predictions (dotted lines) versus actual state values
(solid lines) for the nonlinear crowd emotion dynamics system for a two-agent crowd where
the linearized model given to the state estimator assumes incorrectly that all personality
parameter values are average.

Figure 5.6: The general statistics of the root-mean-square error for the actual versus pre-
dicted states for 1,000 randomly generated two-agent systems, where the linearized model
given to the state estimator assumes incorrectly that all personality parameter values are
average.
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Figure 5.7: The root-mean-square error of the actual versus predicted states for 25 randomly
generated 20-agent crowd systems.

5.8(a) and the non-linear system in Figure 5.8(b) exhibit similar behavior to the two-agent

crowd systems in Figure 5.1. It should be noted that as the crowd grows in size it becomes

less likely for the error convergence to become irregular or show high outlier error as can

happen with the two-agent system, provided that there is enough space between agents so

not to amplify the non-linear terms of the emotion dynamics. This more steady convergence

rate of random configurations of the 20-agent crowd is shown in Figure 5.7.

5.4.6 Edge Case: Emotion Dynamics Limit Cycle

While most crowd systems converge to a steady state equilibrium, there are some exceptional

circumstances that can cause a two-agent crowd system to enter a limit cycle in its emotion

dynamics. We show such an example in Figure 5.9 where the emotional states of the two-

agent crowd cycle on a consistent period. This cycling can occur when two agents are

close enough to each other to have the contagion term in their emotion dynamics dominate

in addition to the two agents having differing opinions such that the dot product of their

opinion vectors has a negative sign. Furthermore, we speculate that the initial conditions
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(a)

(b)

Figure 5.8: Emotion state predictions (dotted lines) versus actual state values (solid lines)
for a linearized emotion model (a) and its non-linear version (b) over time using the same
state observer for a 20-agent crowd system.
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of their emotion state and the relationship of their personality parameters may need to

start in a certain region with respect to their emotional equilibrium. It should also be

noted that in our simulated non-linear model we bound the value of the emotion vector to

have a magnitude of one, which is not accounted for in our model linearization, and may

contribute to this emotion cycling. However, a complete study into the causes for these

limit cycles is left for future work. It should be noted that in this research limit cycles were

only observed in the two agent case and not in any larger crowd systems over numerous

random simulations, perhaps suggesting that the conditions for limit cycles in this system

may become increasingly strict as more agents are added to the system.
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(a)

(b)

Figure 5.9: An example of a limit cycle in the emotion states of a two-agent crowd system.
Predicted states (dotted lines) versus actual states (solid lines) are shown in (a) while the
root-mean-square error between the predicted actual states is shown in (b).
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Chapter 6

Conclusions and Future Work

In this thesis, we have reviewed the relevant literature pertaining to crowd behavior

modeling, constructed a crowd behavior model to simulate the discrete time dynamics of

emotion, movement, and opinion states of each agent, linearized that model around the

simulated equilibrium point, and constructed a state observer from the linearized crowd

emotion model. We discuss our conclusions and directions for future work in the following

sections.

6.1 Conclusions

We have shown that knowing the value of the equilibrium point for the full nonlinear system

is a necessary condition for convergence of this class of estimators, but otherwise not much

information about the crowd is needed to obtain reasonable state estimates. In particu-

lar, zero-error convergence is possible even when the estimator erroneously uses nominal or

average personality parameters in its model for each member of the crowd.

Of course, to simulate our system equilibrium, as done in this thesis, we require a

knowledge of each agent’s personality parameters and opinion vector, which we conclude is

unreasonable knowledge to obtain in any realistic scenario. However, one can imagine taking

crowd measurements for a sufficient amount of time for a live crowd to reach equilibrium and

using this measured equilibrium in our model to drive state prediction error to zero, even

with incorrect model parameterization. Unfortunately, this method would only hold for a

stationary crowd, as a new equilibrium point would need to be simulated at each time step
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as crowd positions may evolve over time.

These conclusions suggest a negative result for using the model class proposed in this

thesis to practically predict crowd emotional state. However, because our initial motivation

is to predict violence occurring in a crowd, we may still be able to find a practical solution to

the state estimation of the crowd system by relaxing our detection and prediction goals. For

example, if we try to instead predict when a crowd, or group of agents, may be entering an

emotional region that characterizes violence rather than predict the exact crowd emotional

state. It should also be considered that if a user of this method were to have no ethical

restrictions in privacy or obtaining personal data, one may imagine a scenario where the

personality parameters and opinion vectors may be inferred from personal data available

through social media and other online mediums. These, and other ethical implications,

should be considered in the future development of this research. We now discuss potential

directions for future work building from the work performed in this thesis.

6.2 Future Work

We partition our discussion of future work into three sections: crowd modeling, state esti-

mation, and crowd data collection.

6.2.1 Crowd Modeling

While the model constructed in Chapter 3 is built from the literature of research in relevant

communities, there is more that can be done to improve model complexity and realism

when testing state evolution on simulated crowds. For example, our movement model, while

simple in execution, could apply a more complex flocking model that allows for agents to

group together in complex ways, similar to how birds flocking or formations form in schools

of fish. There is a rich body of literature, referenced in Section 2.4, that models complex

movement of groups that was not implemented in this thesis. Because this thesis focuses

primarily on the evolution of emotion in a crowd, there is more work to be done in carefully
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modeling the interaction of movement, emotion, opinion between crowd agents and their

respective dynamics.

6.2.2 State Estimation

We have shown that for many random configurations of crowd systems our posed model is

observable (ie. the states can be inferred from the system outputs). However, a complete

analysis on the general observability of our system has yet to be performed. An initial study

into the observability of a simplified model of a two-agent crowd was conducted; however,

expanding the analysis of the two-agent crowd to the N -agent crowd proved to be non-trivial

and time was instead spent on showing model observability through experimental results.

As such, the question of exactly when a crowd system becomes unobservable for N agents

remains open.

Additionally, our state estimation results only show state evolution for a stationary

crowd, where the position of each agent is known, and has not incorporated the movement

component of our model. Future work may incorporated state estimation for a moving

crowd, where the linearized system must be recalculated at each time step to account for

changing positions. Furthermore, as addressed in our conclusion, we may attempt a more

relaxed state estimation where we only attempt to detect emotional regions in the crowd

rather than exact emotional state.

6.2.3 Data Collection

One of the greatest challenges in validating any crowd model is in obtaining high quality

and high resolution data from real crowds. This thesis focuses on validation using simulated

data, but future work may involve attempting validation on real crowd data which must be

carefully collected from organic crowd events. This is no simple task and may be considered

a field of research unto itself; however, to fully validate any crowd behavior model it will

become necessary to have real crowd data to compare model predictions to actual crowd
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behavior.
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Appendix A

Python Code

A.1 CrowdEmotionFunctions.py

import numpy as np

import matplotlib.pyplot as plt

alpha, beta, gamma = .01, .01, .01

class CrowdMember:

def __init__(self, personality, PAD_init, opinion_init, loc_init, agent_id):

self.personality = personality

self.empathy = (0.354*personality[0] +

0.177*personality[1] +

0.135*personality[2] +

0.312*personality[3] +

0.021*personality[4])

self.s = (self.empathy+1)/2

self.q = (personality[2,0]+1)/2

self.omega = (personality[0,0]+1)/2

self.n = (-personality[4,0]+1)/2

self.PAD = PAD_init

self.opinion = opinion_init

self.u = opinion_init

self.loc = loc_init

B = np.array([[0,0,.21,.59,-.19],

[.15,0,0,.3,.57],

[.25,.17,.6,-.32,0]])
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self.restingPAD = B@personality

self.alpha, self.beta, self.gamma = 0.01, 0.01, 0.01

self.restingDynamics = np.array([[-alpha*self.n, 0, 0],

[0, -beta*self.n, 0],

[0, 0, -gamma*self.n]])

self.id = agent_id

class Crowd:

def __init__(self, num_agents, personalities, PADs, opinions, locs):

self.p = personalities

self.PADs = PADs

self.o = opinions

self.locs = locs

self.num_agents = num_agents

self.agents = [CrowdMember(personalities[i],

PADs[i],

opinions[i],

locs[i], i) for i in range(num_agents)]

def update(self, PADs, o, locs):

self.PADs = PADs

self.o = o

self.locs = locs

self.agents = [CrowdMember(self.p[i],

PADs[i],

o[i],

locs[i], i) for i in range(self.num_agents)]

def ReLU(x):

return np.maximum(x,0)
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def Sigmoid(x):

return 1/(1+np.exp(-x))

def distance_penalty(agent_i, agent_j):

eta = 1

d_ij = np.exp(-eta*np.linalg.norm(agent_i.loc - agent_j.loc))

return d_ij

def e_dot(agent_id, crowd):

agent_i = crowd.agents[agent_id]

A = agent_i.restingDynamics

e = agent_i.PAD

e0 = agent_i.restingPAD

s_i = agent_i.s

o_i = agent_i.opinion

l = np.zeros((3,1))

for agent_j in crowd.agents:

if agent_j.id != agent_id:

d_ij = distance_penalty(agent_i, agent_j)

e_j = agent_j.PAD

q_j = agent_j.q

o_j = agent_j.opinion

l += (d_ij*e_j*q_j*s_i*

(1-ReLU(-np.sign(e_j[1]*e_j[2])-np.sign(o_i.T@o_j))))

l = l/(crowd.num_agents-1)

return A@(e-e0)+l

def x_dot(agent_id, crowd):

rho = 1

chi = 1

agent_i = crowd.agents[agent_id]

o_i = agent_i.opinion
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diffusion, emotion = np.zeros(2), np.zeros(2)

for agent_j in crowd.agents:

if agent_j.id != agent_id:

d_ij = distance_penalty(agent_i, agent_j)

e_j = agent_j.PAD

e_mag = np.sqrt(e_j[0]**2+e_j[1]**2+e_j[2]**2)

q_j = agent_j.q

o_j = agent_j.opinion

if(np.linalg.norm(agent_i.loc-agent_j.loc) > .5):

move_e = 1

else:

move_e = 0

if(np.linalg.norm(agent_i.loc-agent_j.loc) <.5):

move_d = 1

else:

move_d = 0

diffusion += move_d*d_ij*(agent_i.loc-agent_j.loc)

emotion += move_e*(d_ij*e_mag*q_j*(agent_j.loc-agent_i.loc)*

(1-ReLU(-np.sign(e_j[1]*e_j[2])

-np.sign(o_i.T@o_j)))).flatten()

diffusion = np.tanh(rho*diffusion/(crowd.num_agents-1))

emotion = np.tanh(chi*emotion/(crowd.num_agents-1))

return diffusion+emotion

def norm(x,y):

dot = x.T@y

n = np.linalg.norm(x)*np.linalg.norm(y)

return dot/n

def o_next(agent_id, crowd):

nu = 0
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a, b, c = 1, 1, 1

agent_i = crowd.agents[agent_id]

omega_i = agent_i.omega

u = agent_i.u

I = np.zeros(crowd.num_agents)

W_min = 10

for j, agent_j in enumerate(crowd.agents):

if agent_j.id != agent_id:

d_ij = distance_penalty(agent_i, agent_j)

q_j = agent_j.q

I[j] = (a*norm(agent_i.personality, agent_j.personality) +

b*norm(agent_i.PAD, agent_j.PAD) +

c*norm(agent_i.opinion, agent_j.opinion))

if d_ij*q_j*I[j] < W_min:

W_min = d_ij*q_j*I[j]

W = 0

for j, agent_j in enumerate(crowd.agents):

if agent_j.id != agent_id:

d_ij = distance_penalty(agent_i, agent_j)

q_j = agent_j.q

W += d_ij*q_j*I[j] + np.abs(W_min)

w = np.zeros(crowd.num_agents)

for j, agent_j in enumerate(crowd.agents):

if agent_j.id != agent_id:

d_ij = distance_penalty(agent_i, agent_j)

q_j = agent_j.q

w[j] = omega_i/W*(d_ij*q_j*I[j] + np.abs(W_min))

else:

w[j] = 1-omega_i
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inf_others = 0

for i in range(crowd.num_agents):

inf_others += w[i]*crowd.agents[i].opinion

inf_others = inf_others*nu*omega_i

inf_self = (1-nu*omega_i)*u

return inf_others + inf_self

def get_color(PAD):

if((PAD[0] < 0) and (PAD[1] > 0) and (PAD[2] > 0)): # Hostile

return 'r'

elif((PAD[0] < 0) and (PAD[1] < 0) and (PAD[2] < 0)): # Bored

return 'k'

elif((PAD[0] < 0) and (PAD[1] < 0) and (PAD[2] > 0)): # Disstainful

return 'g'

elif((PAD[0] < 0) and (PAD[1] > 0) and (PAD[2] < 0)): # Anxious

return 'b'

elif((PAD[0] > 0) and (PAD[1] < 0) and (PAD[2] < 0)): # Docile

return 'w'

elif((PAD[0] > 0) and (PAD[1] > 0) and (PAD[2] > 0)): # Exuberant

return 'y'

elif((PAD[0] > 0) and (PAD[1] > 0) and (PAD[2] < 0)): # Dependant

return 'c'

elif((PAD[0] > 0) and (PAD[1] < 0) and (PAD[2] > 0)): # Relaxed

return 'm'

def get_shape(o):

if o[0] > 0:

return 'o'

else:

return 's'

def simplified_model(crowd):

N = crowd.num_agents

A = np.zeros((N,N))
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for i, agent_i in enumerate(crowd.agents):

for j, agent_j in enumerate(crowd.agents):

if i == j:

A[i,j] = 1-agent_i.n

else:

d_ij = distance_penalty(agent_i, agent_j)

q_j = agent_j.q

s_i = agent_i.s

A[i,j] = 1/(N-1)*d_ij*q_j*s_i

return A

def init_crowd(num_agents, area):

p_init = []

PADs_init = []

o_init = []

loc_init = []

for i in range(num_agents):

p_init.append(np.random.normal(loc=0.0,scale=.3,size=(5,1)))

PADs_init.append(np.random.uniform(-1,1,(3,1)))

p_init.append(np.random.normal(loc=0.0,scale=.3,size=(5,1)))

o_init.append(np.random.uniform(-1,1,(1,1)))

loc_init.append(np.random.uniform(-area,area,2))

crowd = Crowd(num_agents, p_init, PADs_init, o_init, loc_init)

return crowd

def distance(x,y):

return np.sqrt(np.sum((x-y)**2))

def makeC(crowd, mic_loc, dim):

C = np.zeros((dim,len(crowd.agents)*dim))

if dim > 1:
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for agent in crowd.agents:

r = distance(mic_loc,agent.loc)

C[0,agent.id] = 1/r

C[1,agent.id+len(crowd.agents)] = 1/r

C[2,agent.id+len(crowd.agents)*2] = 1/r

else:

for agent in crowd.agents:

r = distance(mic_loc,agent.loc)

C[0,agent.id] = 1/r

return C

def kalman_results(f, num_steps, dim, noise_scale, num_agents, plot=False):

xs = []

xps = []

ys = []

Ks = []

zs = []

for _ in range(num_steps):

z = f.H@f.x + np.random.normal(loc=0,scale=noise_scale,size=(dim,1))

f.predict()

f.update(z)

xs.append(f.x)

ys.append(f.y)

Ks.append(f.K)

xps.append(f.x_prior)

zs.append(z)

savedK = np.copy(f.K)

savedP = np.copy(f.P)

if plot:

if dim == 1:

plt.figure()

plt.title('State predections')

plt.xlabel('t')

for i in range(num_agents):
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data = []

for x in xs:

data.append(x[i])

plt.plot(data)

plt.grid()

else:

titles = ['P','A','D']

plt.figure(figsize=(12,4))

for i in range(dim):

plt.subplot(1, dim, i+1)

plt.title(titles[i])

for j in range(num_agents):

data = []

for x in xs:

data.append(x[j+i*num_agents])

plt.plot(data)

plt.grid()

plt.figure()

plt.plot(np.array(xs).squeeze(2))

plt.grid()

plt.savefig('results/state_predictions.png')

plt.figure()

plt.title('Residual')

plt.xlabel('t')

plt.plot(np.array(ys).squeeze(2))

plt.grid()

plt.savefig('results/residuals.png')

plt.figure()

plt.title('Kalman gains')

plt.xlabel('t')

for i in range(num_agents):
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data=[]

for k in Ks:

data.append(k[i])

plt.plot(data)

plt.grid()

plt.savefig('results/kalman_gains.png')

#

plt.figure()

plt.title('Measurements')

plt.plot(np.array(zs).squeeze(2))

plt.grid()

plt.savefig('results/measurements.png')

plt.close()

return savedK, zs

def state_observer(A, C, L, x0, y_mes):

x_hat = x0

xs = []

ys = []

res = []

for i, y in enumerate(y_mes):

y_hat = C@x_hat

x_h_next = A@x_hat + L@(y-y_hat)

xs.append(x_h_next)

ys.append(y_hat)

res.append(y-y_hat)

x_hat = x_h_next

return xs, ys, res

def s_ReLU(x,tau):

return np.log(1+np.exp(tau*x))/tau
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def s_sgn(x,tau):

# return np.tanh(tau*x)

return 2/(1+np.exp(-tau*x))-1

def BuildJ(crowd, x, tau, equilibrium=True):

tau_R = 10

N = crowd.num_agents

es = []

for i in range(N):

e = np.array([x[i], x[i+N], x[i+2*N]])

es.append(e)

J_P, J_A, J_D = np.zeros((N,N)),np.zeros((N,N)),np.zeros((N,N))

J_P_A, J_P_D, J_A_D, J_D_A = (np.zeros((N,N)),

np.zeros((N,N)),

np.zeros((N,N)),

np.zeros((N,N)))

for i, agent_i in enumerate(crowd.agents):

for j, agent_j in enumerate(crowd.agents):

if agent_i.id == agent_j.id:

if equilibrium:

J_P[i,i], J_A[i,i], J_D[i,i] = (-agent_i.alpha*agent_i.n,

-agent_i.beta*agent_i.n,

-agent_i.gamma*agent_i.n)

J_P_A[i,i], J_P_D[i,i], J_A_D[i,i], J_D_A[i,i] = (0.0,

0.0,

0.0,

0.0)

else:

J_P[i,i], J_A[i,i], J_D[i,i] = (1-agent_i.alpha*agent_i.n,

1-agent_i.beta*agent_i.n,

1-agent_i.gamma*agent_i.n)

J_P_A[i,i], J_P_D[i,i], J_A_D[i,i], J_D_A[i,i] = (0.0,

0.0,
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0.0,

0.0)

else:

d_ij = distance_penalty(agent_i, agent_j)

q_j = agent_j.q

s_i = agent_i.s

e_j = es[j]

o_i, o_j = agent_i.opinion, agent_j.opinion

phi_j = -s_sgn(e_j[1]*e_j[2],tau)-s_sgn(o_i.T@o_j, tau)

theta_j = ((2*tau*np.exp(tau_R*phi_j-tau*e_j[1]*e_j[2]))/

((1+np.exp(tau_R*phi_j))*(1+np.exp(-e_j[1]*e_j[2]*tau))**2))

quan = d_ij*q_j*s_i/(N-1)

J_P[i,j] = quan*(1-s_ReLU(phi_j,tau))

J_A[i,j] = quan*(1+e_j[1]*e_j[2]*theta_j-s_ReLU(phi_j,tau))

J_D[i,j] = quan*(1+e_j[1]*e_j[2]*theta_j-s_ReLU(phi_j,tau))

J_P_A[i,j], J_P_D[i,j] = (quan*e_j[0]*e_j[2]*theta_j,

quan*e_j[0]*e_j[1]*theta_j)

J_A_D[i,j], J_D_A[i,j] = (quan*e_j[1]**2*theta_j,

quan*e_j[2]**2*theta_j)

z_block = np.zeros((N,N))

J = np.block([[J_P, J_P_A, J_P_D],

[z_block, J_A, J_A_D],

[z_block, J_D_A, J_D]])

return J

def BuildF_eq_pt(crowd, x, tau):

N = crowd.num_agents

es = []

for i in range(N):
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e = np.array([x[i], x[i+N], x[i+2*N]])

es.append(e)

F = np.zeros((3*N,1))

for i, agent_i in enumerate(crowd.agents):

e_star = agent_i.restingPAD

l = np.zeros((3,1))

for j, agent_j in enumerate(crowd.agents):

if agent_j.id != agent_i.id:

d_ij = distance_penalty(agent_i, agent_j)

e_j = agent_j.PAD

q_j = agent_j.q

s_i = agent_i.s

o_i = agent_i.opinion

o_j = agent_j.opinion

l += (d_ij*e_j*q_j*s_i*

(1-ReLU(-np.sign(e_j[1]*e_j[2])-np.sign(o_i.T@o_j))))

l = l/(N-1)

F[i] = -(agent_i.alpha*agent_i.n)*(x[i]-e_star[0])+l[0]

F[i+N] = -(agent_i.beta*agent_i.n)*(x[i+N]-e_star[1])+l[1]

F[i+2*N] = -(agent_i.gamma*agent_i.n)*(x[i+2*N]-e_star[2])+l[2]

return F

def newtons_method_step(crowd, x, tau):

J = BuildJ(crowd,x,tau,equilibrium=True)

F = BuildF_eq_pt(crowd,x,tau)

dx = -np.linalg.inv(J)@F

x_new = x + dx
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return x_new

A.2 model tests.py

import numpy as np

import matplotlib.pyplot as plt

import tqdm

from filterpy.kalman import KalmanFilter

from CrowdEmotionFunctions import *

num_tests = 50

seeds = [i for i in range(num_tests)]

mse_l = []

mse_nl = []

e_mes_l = []

e_mes_nl = []

min_count = 0

s_used = []

noise = False

noise_scale = 1e-2

test_dist = False

mic_loc = np.array([0,0])

num_agents = 20

area = num_agents

dim = 3

num_steps = 4000

tau = 100

num_steps_k = 500

for seed in tqdm.tqdm(seeds):
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np.random.seed(seed)

crowd = init_crowd(num_agents,area)

if num_agents == 2 and test_dist == True:

d = 1.7

locs = [np.array([0,d]), np.array([0,-d])]

crowd.update(crowd.PADs, crowd.o, locs)

x = np.random.uniform(low=-1,high=1,size=(dim*num_agents,1))

x0 = np.array(x, dtype='longdouble')

C = makeC(crowd, mic_loc, dim)

# Generate data for non-linear model test

e0 = []

for i in range(num_agents):

e0.append(np.array([x0[i], x0[i+num_agents], x0[i+2*num_agents]]))

crowd.update(e0, crowd.o, crowd.locs)

t = []

x_test_nl = [x0]

y_test_nl = [C@x0]

for _ in range(num_steps):

e_dots = [e_dot(agent.id, crowd) for agent in crowd.agents]

e_curr = crowd.PADs

e_new = ([(e_curr[i]+e_dot)/np.max([1,np.linalg.norm(e_curr[i]+e_dot)])

for i, e_dot in enumerate(e_dots)])

x_next = np.zeros((num_agents*dim,1))

for i in range(num_agents):

x_next[i] = e_new[i][0]

x_next[i+num_agents] = e_new[i][1]

x_next[i+2*num_agents] = e_new[i][2]

x_test_nl.append(x_next)
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e_star = x_next

y_test_nl.append(C@x_next)

crowd.update(e_new,crowd.o, crowd.locs)

t.append(Crowd(crowd.num_agents,crowd.p,crowd.PADs,crowd.o,crowd.locs))

for i, y in enumerate(y_test_nl):

if noise:

y_test_nl[i] = y - C@e_star

else:

y_test_nl[i] = (y - C@e_star +

np.random.normal(loc=0,scale=noise_scale,size=(C@e_star).shape))

A = BuildJ(crowd, e_star, tau, equilibrium=False)

f = KalmanFilter (dim_x=num_agents*dim, dim_z=dim)

f.x, f.F, f.H = x0, A, C

noise_scale_k = 1e-3

f.R, f.Q = noise_scale_k, noise_scale_k

f.P *= noise_scale

K, zs = kalman_results(f,num_steps_k,dim, noise_scale, num_agents)

L = K

# Generate data for linearized model test

x = x0

x_test = [x]

y_test = [C@x]

for _ in range(num_steps):

x_next = A@x

x_test.append(x_next)

if noise:

y_test.append(C@x_next +

np.random.normal(loc=0,scale=noise_scale,size=(C@x_next).shape))
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else:

y_test.append(C@x_next)

x = x_next

x_hat = np.random.uniform(low=-1,high=1,size=(num_agents*dim,1))

xs, ys, res = state_observer(A,C,L,x_hat,y_test)

xs_nl, ys_nl, res_nl = state_observer(A,C,L,x_hat,y_test_nl)

diff = np.array(x_test).squeeze(2)-np.array(xs).squeeze(2)

mse_l0 = np.sqrt(np.sum(diff**2, axis=1))

diff = np.array(x_test_nl).squeeze(2)-(np.array(xs_nl).squeeze(2)+e_star.T)

mse_nl0 = np.sqrt(np.sum(diff**2, axis=1))

if True:

s_used.append(seed)

mse_l.append(mse_l0)

mse_nl.append(mse_nl0)

e_mes_l.append(res)

e_mes_nl.append(res_nl)

plt.figure(figsize=(6,3))

plt.plot(np.array(x_test_nl).squeeze(2), label='actual')

plt.plot(np.array(xs_nl).squeeze(2)+e_star.T, '--', label='observer')

plt.ylim(-1.1, 1.1)

plt.grid()

plt.xlabel('Time step')

plt.tight_layout()

plt.savefig('so_states_nonlinear'+str(seed)+'.png')

plt.close()

plt.figure(figsize=(6,3))

plt.plot(np.array(x_test).squeeze(2), label='actual')

plt.plot(np.array(xs).squeeze(2), '--', label='observer')
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plt.ylim(-1.1, 1.1)

plt.grid()

plt.xlabel('Time step')

plt.tight_layout()

plt.savefig('so_states_linear'+str(seed)+'.png')

plt.close()

e_l = np.array(e_mes_l).squeeze(3)**2

e_nl = np.array(e_mes_nl).squeeze(3)**2

e_l_mean = np.sqrt(np.mean(np.mean(e_l, axis=0),axis=1))

e_l_std = np.std(np.std(e_l, axis=0),axis=1)

e_nl_mean = np.sqrt(np.mean(np.mean(e_nl, axis=0), axis=1))

e_nl_std = np.std(np.std(e_nl, axis=0), axis=1)

t = [i for i in range(num_steps+1)]

figsize = (6,3)

mse_mean = np.mean(mse_nl, axis=0)

mse_median = np.median(mse_nl, axis=0)

mse_std = np.std(mse_nl, axis=0)

plt.figure(figsize=figsize)

plt.plot(t,mse_mean, 'k-', label='Mean')

plt.plot(t,mse_median, 'r--', label='Median')

plt.fill_between(t,mse_mean-mse_std, mse_mean+mse_std,

alpha=0.5, label='Standard Deviation')

plt.grid()

plt.legend()

plt.xlabel('Time step')

plt.ylabel('RMS Error')

plt.tight_layout()

plt.savefig('state_observer_error_test_nl.png')
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plt.figure(figsize=figsize)

plt.plot(t,np.array(mse_nl).T, linewidth=.5 )

plt.grid()

plt.xlabel('Time step')

plt.ylabel('RMS Error')

plt.tight_layout()

plt.savefig('state_observer_error_test_nl_multiline.png')

mse_mean = np.mean(mse_l, axis=0)

mse_median = np.median(mse_l, axis=0)

mse_std = np.std(mse_l, axis=0)

plt.figure(figsize=figsize)

plt.plot(t,mse_mean, 'k-', label='Mean')

plt.plot(t,mse_median, 'r--', label='Median')

plt.fill_between(t,mse_mean-mse_std, mse_mean+mse_std,

alpha=0.5, label='Standard Deviation')

plt.grid()

plt.legend()

plt.xlabel('Time step')

plt.ylabel('RMS Error')

plt.tight_layout()

plt.savefig('state_observer_error_test_l.png')

plt.figure(figsize=figsize)

plt.plot(t,e_nl_mean,'k-', label='Mean')

plt.fill_between(t,e_nl_mean-e_nl_std, e_nl_mean+e_nl_std,

alpha=0.4, label='Standard Deviation')

plt.grid()

plt.legend()

plt.xlabel('Time step')

plt.ylabel('RMS Error')

plt.tight_layout()

plt.savefig('state_observer_error_test_nl_mes.png')
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plt.figure(figsize=figsize)

plt.plot(t,e_l_mean,'k-', label='Mean')

plt.fill_between(t,e_l_mean-e_l_std, e_l_mean+e_l_std,

alpha=0.4, label='Standard Deviation')

plt.grid()

plt.legend()

plt.xlabel('Time step')

plt.ylabel('RMS Error')

plt.tight_layout()

plt.savefig('state_observer_error_test_l_mes.png')

plt.close()
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